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0Part II: Component Object Model Programming Interface
Part  II  contains  the  programming  interface  to  COM,  the  suite  of  interfaces  and  APIs  by  which
Component Object Model software is implemented and used.
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1Component Object Model Technical Overview
Chapter 1 introduced some important challenges and problems in computing today and the Component
Object  Model  as  a  solution  to  these  problems.  Chapter  1  introduced  interfaces,  mentioned  the  base
interface called  IUnknown, and described how interfaces are generally used to communicate between an
object and a client of that object, and explained the role that COM has in that communication to provide
location transparency.
Yet  there  are plenty of topics  that  have not been covered in much technical  detail,  specifically,  how
certain mechanisms work, some of the interfaces involved, and how some of these interfaces are used on
a high level. This chapter will describe COM in a more technical light but not going as far as describing
individual  interface  functions or COM Library  API functions.  Instead,  this chapter  will  refer  to  later
chapters  in  the  COM  Specification  that  cover  various  topics  in  complete  detail  including  the
specifications for functions and interfaces themselves.
This chapter is generally organized in the same order as Chapter 1 and covers the following topics which
are then treated in complete detail in the indicated chapters:
· Objects and Interfaces: A comparison of interfaces to C++ classes, the IUnknown interface (including

the QueryInterface function and reference counting), the structure of an instantiated interface and
the benefits of that structure, and how clients of objects deal with interfaces. Chapter 3 covers
the underlying interfaces and API functions themselves.

· COM Applications: The responsibilities of all applications making use of COM which includes rules
for memory management. How applications meet these responsibilities is covered in Chapter 4.

· COM Clients and Servers: The roles and responsibilities of each specific type of application, the use
of class identifiers, and the COM Library’s role in providing communication. Chapter 5 and 6
treat  COM  Clients  and  Servers  separately.  How  COM  achieves  location  transparency  is
described in Chapter 7.

· Reusability:  A discussion  about  why  implementation  inheritance  is  not  used  in  COM and  what
mechanisms  are  instead  available.  How  an  object  server  is  written  to  handle  the  COM
mechanisms is a topic of Chapter 6.

· Connectable Objects: A brief overview of the connection point interfaces and semantics.  The actual
functional specification of connectable objects is in Chapter 9.

· Persistent  Storage:  A  detailed  look  at  what  persistent  storage  is,  what  benefits  it  holds  for
applications  including  incremental  access  and  transactioning  support,  leaving  the  APIs  and
interface specifications to Chapter 10.

· Persistent, Intelligent Names: Why it is important to assign names to individual object instantiations
(as  opposed  to  a  class  identifier  for  an  object  class)  and  the  mechanisms  for  such  naming
including  moniker  objects.  The  interfaces  a  moniker  implements  as  well  as  other  support
functions are described in Chapter 11.

· Uniform Data Transfer: The separation of transfer protocols from data exchange, improvements to
data format descriptions, the expansion of available exchange mediums (over global memory),
and  data  change  notification  mechanisms.  New  data  structures  and  interfaces  specified  to
support data transfer is given in Chapter 12.

1.1Objects and Interfaces
Chapter 1 described that interfaces are—strongly typed semantic contracts between client and object—
and that an object in COM is any structure that exposes its functionality through the interface mechanism.
In addition, Chapter 1 noted how interfaces follow a binary standard and how such a standard enables
clients  and objects  to interoperate  regardless of the programming languages used to implement  them.
While the type of an interface is by colloquial convention referred to with a name starting with an “I” (for
interface), this name is only of significance in source-level programming tools. Each interface itself—the
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immutable  contract,  that  is—as  a  functional  group  is  referred  to  at  runtime  with  a  globally-unique
interface  identifier,  an “IID” that  allows a client  to  ask an object  if  it  supports  the  semantics  of the
interface without unnecessary overhead and without versioning problems. Clients ask questions using a
QueryInterface function that all objects support through the base interface, IUnknown.
Furthermore,  clients always deal  with objects through interface  pointers and never directly access the
object  itself.  Therefore  an interface  is not an object,  and an object  can,  in fact,  have  more than one
interface if it has more than one group of functionality it supports.
Let’s now turn to how interfaces manifest themselves and how they work.

1.1.1Interfaces and C++ Classes
As just reiterated, an interface is not an object, nor is it an object class. Given an interface definition by
itself, that is, the type definition for an interface name that begins with “I,” you cannot create an object of
that type. This is one reason why the prefix “I” is used instead of the common C++ convention of using a
“C” to prefix an object class, such as CMyClass. While you can instantiate an object of a C++ class, you
cannot instantiate an object of an interface type.
In C++ applications, interfaces are, in fact, defined as abstract base classes. That is, the interface is a C+
+ class that contains nothing but pure virtual member functions. This means that the interface carries no
implementation  and only  prescribes  the  function  signatures  for  some other  class  to  implement—C++
compilers will generate compile-time errors for code that attempts to instantiate an abstract base class.
C++ applications  implement  COM objects  by  inheriting  these  function  signatures  from one or  more
interfaces, overriding each interface function, and providing an implementation of each function. This is
how a C++ COM application “implements interfaces” on an object. 
Implementing objects and interfaces in other languages is similar in nature, depending on the language.
In C, for example, an interface is a structure containing a pointer to a table of function pointers, one for
each method in the interface.  It is very straightforward to use or to implement a COM object in C, or
indeed in any programming language which supports the notion of function pointers. No special tools or
language enhancements are required (though of course such things may be desirable).
The abstract-base class comparison exposes an attribute of the “contract”  concept of interfaces:  if you
want to implement any single function in an interface, you must provide some implementation for every
function in that interface. The implementation might be nothing more than a single return statement when
the  object  has  nothing  to  do  in  that  interface  function.  In  most  cases  there  is  some  meaningful
implementation in each function, but the number of lines of code varies greatly (one line to hundreds,
potentially).
A particular  object  will  provide  implementations for  the functions in every  interface  that  it  supports.
Objects  which have the  same set  of interfaces  and the  same implementations for  each  are often  said
(loosely) to be instances of the same class because they generally implement those interfaces in a certain
way. However, all access to the instances of the class by clients will only be through interfaces; clients
know nothing about an object other than it supports certain interfaces. As a result, classes play a much
less significant role in COM than they do in other object oriented systems.
COM  uses  the  word  “interface”  in  a  sense  different  from  that  typically  used  in  object-oriented
programming using C++. In the C++ context, “interface” describes all the functions that a class supports
and that clients of an object can call to interact with it. A COM interface refers to a pre-defined group of
related functions that a COM class implements, but does not necessarily represent  all  the functions that
the  class  supports.  This separation  of an object’s  functionality  into groups is what enables  COM and
COM applications to avoid the problems inherent with versioning traditional all-inclusive interfaces.

1.1.2Interfaces and Inheritance
COM separates class hierarchy (or indeed any other implementation technology) from interface hierarchy
and both of those from any implementation hierarchy.  Therefore, interface inheritance is only applied to
reuse the definition of the contract associated with the base interface. There is no selective inheritance in
COM: if one interface inherits from another, it includes all the functions that the other interface defines,
for the same reason than an object must implement all interface functions it inherits.
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Inheritance is used sparingly in the COM interfaces.  Most of the pre-defined interfaces inherit directly
from  IUnknown  (to  receive  the  fundamental  functions  like  QueryInterface),  rather  than  inheriting  from
another interface to add more functionality.  Because COM interfaces are inherited from  IUnknown, they
tend to be small and distinct from one another. This keeps functionality in separate groups that can be
independently  updated  from  the  other  interfaces,  and  can  be  recombined  with  other  interfaces  in
semantically useful ways.
In addition, interfaces only use single inheritance, never multiple inheritance, to obtain functions from a
base interface.  Providing otherwise would significantly complicate the interface method call  sequence,
which is just an indirect function call, and, further, the utility of multiple inheritance is subsumed within
the capabilities provided by QueryInterface.

1.1.3Interface Definitions: IDL
When  a  designer  creates  an  interface,  that  designer  usually  defines  it  using  an  Interface  Description
Language  (IDL).  From  this  definition  an  IDL  compiler  can  generate  header  files  for  programming
languages  such  that  applications  can  use  that  interface,  create  proxy and  stub  objects  to  provide  for
remote procedure calls, and output necessary to enable RPC calls across a network.
IDL is simply a tool (one of possibly many) for the convenience  of the interface  designer and is not
central to COM’s interoperability. It really just saves the designer from manually creating many header
files for each programming environment and from creating proxy and stub objects by hand, which would
not likely be a fun task.
Chapter  13 describes the Microsoft Interface  Description Language in detail.   In addition, Chapter  14
covers Type Libraries which are the machine readable form of IDL, used by tools and other components
at runtime.

1.1.4Basic Operations: The IUnknown Interface
All objects in COM, through any interface, allow clients access to two basic operations:
· Navigating between multiple interfaces on an object through the QueryInterface function.
· Controlling the object’s  lifetime  through a reference  counting mechanism handled  with functions

called AddRef and Release.
Both  of  these  operations  as  well  as  the  three  functions  (and  only  these  three)  make  up the  IUnknown
interface from which all other interfaces inherit. That is, all interfaces are polymorphic with IUnknown so
they all contain QueryInterface, AddRef, and Release functions.

Navigating Multiple Interfaces: the QueryInterface Function
As described  in  Chapter  1,  QueryInterface is  the  mechanism  by  which  a  client,  having  obtained  one
interface pointer on a particular object, can request additional pointers to  other  interfaces on that same
object.  An  input  parameter  to  QueryInterface  is  the  interface  identifier  (IID)  of  the  interface  being
requested. If the object supports this interface, it returns that interface on itself through an accompanying
output parameter typed as a generic void; if not, the object returns an error.
In effect, what QueryInterface accomplishes is a switch between contracts on the object. A given interface
embodies  the  interaction  that  a  certain  contract  requires.  Interfaces  are  groups  of  functions  because
contracts  in  practice  invariably  require  more  than one supporting function.  QueryInterface  separates  the
request  “Do  you  support  a  given  contract?”  from  the  high-performance  use  of  that  contract  once
negotiations have been successful. Thus, the (minimal) cost of the contract negotiation is amortized over
the subsequent use of the contract. 
Conversely, QueryInterface provides a robust and reliable way for a component to indicate that in fact does
not support a given contract. That is, if using QueryInterface one asks an “old” object whether it supports a
“new” interface (one, say, that was invented after the old object has been shipped), then the old object
will reliably and robustly answer “no;” the technology which supports this is the algorithm by which IIDs
are  allocated.  While  this  may  seem  like  a  small  point,  it  is  excruciatingly  important  to  the  overall
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architecture of the system, and this capability to robustly inquire of old things about new functionality is,
surprisingly, a feature not present in most other object architectures.
The strengths and benefits of the QueryInterface mechanism need not be reiterated here further, but there is
one pressing issue: how does a client obtain its first interface pointer to an object? That question is of
central  interest  to COM applications but has no one answer.  There are,  in fact,  four methods through
which a client obtains its first interface pointer to a given object:
· Call  a  COM Library  API function  that  creates  an  object  of  a  pre-determined  type—that  is,  the

function will only return a pointer to one specific interface for a specific object class.
· Call a COM Library API function that can create an object based on a class identifier and that returns

any type interface pointer requested.
· Call a member function of some interface that creates another object (or connects to an existing one)

and returns an interface pointer on that separate object.1

· Implement an object with an interface through which other objects pass their interface pointer to the
client directly. This is the case where the client is an object implementor and passes a pointer to
its object to another object to establish a bi-directional connection.

Reference Counting: Controlling Object Life-cycle
Just like an application must free memory it allocated once that memory is no longer in use, a client of an
object  is responsible for freeing the object when that object is no longer needed. In an object-oriented
system the client can only do this by giving the object an instruction to free itself.
However, the difficulty lies in having the object know when it is safe to free itself. COM objects, which
are dynamically allocated, must allow the client to decide when the object is no longer in use, especially
for local or remote objects that may be in use by multiple clients at the same time—the object must wait
until all clients are finished with it before freeing itself.
COM specifies a  reference counting  mechanism to provide this control. Each object maintains a 32-bit
reference count that tracks how many clients are connected to it, that is, how many pointers exist to any
of its interfaces in any client.  The use of a 32-bit counter (more than four billions clients) means that
there’s virtually no chance of overloading the count.
The two  IUnknown functions of  AddRef and  Release that  all  objects  must  implement  control  the  count:
AddRef increments the count and Release decrements it. When the reference count is decremented to zero,
Release is allowed to free the object because no one else is using it anywhere. Most objects have only one
implementation  of  these  functions  (along  with  QueryInterface)  that  are  shared  between  all  interfaces,
though  this  is  just  a  common  implementation  approach.  Architecturally,  from  a  client’s  perspective,
reference counting is strictly and clearly a per-interface notion.
Whenever a client  calls a function that returns a new interface  pointer to it,  such as  QueryInterface, the
function being called is responsible for incrementing the reference count through the returned pointer.
For example, when a client first creates an object it receives back an interface pointer to an object that,
from the client’s point of view, has a reference count of one. If the client  calls  QueryInterface  once for
another  interface  pointer,  the  reference  count  is  two.  The  client  must  then  call  Release  through  both
pointers (in any order) to decrement the reference count to zero before the object as a whole can free
itself.
In  general,  every  copy  of  any  pointer  to  any  interface  requires  a  reference  count  on  it.  Chapter  3,
however,  identifies  some  important  optimizations  that  can  be  made  to  eliminate  extra  unnecessary
overhead with reference counting and identifies the specific cases in which calling  AddRef is absolutely
necessary.

1.1.5How an Interface Works
An instantiation  of an interface implementation  (because  the defined  interfaces  themselves  cannot  be
instantiated without implementation) is simply pointer to an array of pointers to functions. Any code that
has access to that array—a pointer through which it can access the array—can call the functions in that

1  Connecting to objects through an “intelligent/persistent name” (moniker) falls into this category.
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interface.  In reality,  a pointer to an interface  is actually a pointer to a pointer to the table of function
pointers. This is an inconvenient way to speak about interfaces,  so the term “interface pointer” is used
instead to refer to this multiple indirection. Conceptually, then, an interface pointer can be viewed simply
as a pointer to a function table in which you can call those functions by dereferencing them by means of
the interface pointer as shown in Figure 2-1.

pointer

Interface Function Table

Interface Pointer

Pointer to Function1

Function1(...)
{
...
}

Pointer to Function2

Pointer to Function3

...

Function2(...)
{
...
}

Function3(...)
{
...
}

...

Figure 2-1: An interface pointer is a pointer to a pointer to an array of pointers
to the functions in the interface.

Since  these  function  tables  are  inconvenient  to  draw they  are  represented  with  the  “plug-in jack”  or
“bubbles and push-pins” diagram first shown in Chapter 1 to mean exactly the same thing:

Interface Pointer Object

Objects with multiple interfaces are merely capable of providing more than one function table. Function
tables can be created manually in a C application or almost automatically with C++ (and other object
oriented languages that support COM). Chapter 3 describes exactly how this is accomplished along with
how the implementation of the interface functions know exactly which object is being used at any given
time.
With  appropriate  compiler  support  (which  is  inherent  in  C and C++),  a  client  can  call  an  interface
function through the name of the function and not its position in the array. The names of functions and
the fact that an interface is a type allows the compiler to check the types of parameters and return values
of each interface function call.  In contrast,  such type-checking is not available even in C or C++ if a
client used a position-based calling scheme.

1.1.6Interfaces Enable Interoperability
COM is designed around the use of interfaces because interfaces enable interoperability. There are three
properties of interfaces that provide this: polymorphism, encapsulation, and transparent remoting.

Polymorphism
Polymorphism means the ability to assume many forms, and in object-oriented programming it describes
the ability to have a single statement invoke different functions at different times. All COM interfaces are
polymorphic;  when  you  call  a  function  using  an  interface  pointer,  you  don’t  specify  which
implementation is invoked. A call to pInterface->SomeFunction can cause different code to run depending on
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what kind of object is the implementor of the interface pointed by pInterface—while the semantics of the
function are always the same, the implementation details can vary.
Because the interface standard is a binary standard, clients that know how to use a given interface can
interact with any object that supports that interface  no matter how the object implements that contract .
This allows interoperability as you can write an application that  can cooperate with other applications
without you knowing who or what they are beforehand.

Encapsulation
Other  advantages  of  COM arise  from its  enforcement  of  encapsulation.  If  you have  implemented  an
interface, you can change or update the implementation without affecting any of the clients of your class.
Similarly,  you are immune to changes that others make in their implementations of their interfaces;  if
they improve their implementation, you can benefit from it without recompiling your code.
This separation of contract  and implementation can also allow you to take advantage of the different
implementations  underlying  an  interface,  even  though  the  interface  remains  the  same.  Different
implementations  of  the  same  interface  are  interchangeable,  so  you  can  choose  from  multiple
implementations depending on the situation.
Interfaces  provides  extensibility;  a  class  can  support  new  functionality  by  implementing  additional
interfaces  without  interfering  with any of its  existing clients.  Code using an object’s  ISomeInterface is
unaffected if the class is revised to in addition support IAnotherInterface.

Transparent Remoting
COM interfaces allow one application to interact  with others anywhere on the network just as if they
were on the same machine. This expands the range of an object’s interoperability: your application can
use any object that supports a given contract, no matter how the object implements that contract, and no
matter what machine the object resides on.
Before COM, class code such as C++ class libraries ran in same process, either linked into the executable
or as a dynamic-link library. Now class code can run in a separate process, on the same machine or on a
different  machine,  and your application  can  use it  with no special  code.  COM can intercept  calls  to
interfaces through the function table and generate remote procedure calls instead.

1.2COM Application Responsibilities
Each process that  uses COM in any way—client,  server,  object  implementor—is responsible for three
things:
1. Verify that the COM Library is a compatible version with the COM function CoBuildVersion.
2. Initialize  the  COM Library  before  using  any  other  functions  in  it  by  calling  the  COM function

CoInitialize.
3. Un-initialize the COM Library when it is no longer in use by calling the COM function CoUninitialize.
While these responsibilities and functions are covered in detail in Chapter 4, note first that most COM
Library functions, primarily those that deal with the COM foundation, are prefixed with “Co” to identify
their origin. The COM Library may implement other functions to support persistent storage, naming, and
data transfer without the “Co” prefix.

1.2.1Memory Management Rules
In COM there are many interface member functions and APIs which are called by code written by one
programming organization and implemented by code written by another.  Many of the parameters  and
return values of these functions are of types that can be passed around by value;  however,  sometimes
there arises the need to pass data structures for which this is not the case, and for which it is therefore
necessary that the caller and the callee agree as to the allocation and de-allocation policy. This could in
theory be decided  and documented  on an individual  function  by function  basis,  but  it  is  much more
reasonable  to  adopt  a  universal  convention  for  dealing  with  these  parameters.  Also,  having  a  clear
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convention is important  technically  in order  that  the COM remote procedure  call  implementation  can
correctly manage memory.
Memory management of pointers to interfaces is always provided by member functions in the interface in
question. For all  the COM interfaces  these are the  AddRef and  Release functions found in the  IUnknown
interface,  from which again all other COM interfaces derive (as described earlier in this chapter). This
section relates only to non-by-value parameters which are not pointers to interfaces but are instead more
mundane things like strings, pointers to structures, etc.
The  COM  Library  provides  an  implementation  of  a  memory  allocator  (see  CoGetMalloc and
CoTaskMemAlloc).  Whenever  ownership  of  an  allocated  chunk  of  memory  is  passed  through  a  COM
interface or between a client and the COM library, this allocator must be used to allocate the memory. 2

Each parameter to and the return value of a function can be classified into one of three groups: an  in
parameter,  an  out parameter  (which includes return values),  or an  in-out parameter.  In each  class  of
parameter, the responsibility for allocating and freeing non-by-value parameters is the following:

in parameter Allocated and freed by the caller.

out parameter Allocated by the callee; freed by the caller.

in-out parameter Initially allocated by the caller, then freed and re-allocated by the 
callee if necessary. As with out parameters, the caller is responsible 
for freeing the final returned value.

In the latter two cases there is one piece of code that allocates the memory and a different piece of code
that frees it. In order for this to be successful, the two pieces of code must of course have knowledge of
which memory allocator is being used. Again, it is often the case that the two pieces of code are written
by independent development organizations. To make this work, we require that  the COM allocator be
used.
Further,  the treatment  of  out  and in-out  parameters  in  failure  conditions needs special  attention.  If  a
function returns a status code which is a failure code, then in general the caller has no way to clean up the
out or in-out parameters. This leads to a few additional rules:

out parameter In error returns, out parameters must be always reliably set to a value 
which will be cleaned up without any action on the caller’s part. 
Further, it is the case that all out pointer parameters (usually passed in
a pointer-to-pointer parameter, but which can also be passed as a 
member of a caller-allocate callee-fill structure) must explicitly be set 
to NULL. The most straightforward way to ensure this is (in part) to 
set these values to NULL on function entry.3

(On success returns, the semantics of the function of course determine
the legal return values.)

in-out parameter In error returns, all in-out parameters must either be left alone by the 
callee (and thus remaining at the value to which it was initialized by 
the caller; if the caller didn’t initialize it, then it’s an out parameter, 
not an in-out parameter) or be explicitly set as in the out parameter 
error return case.

The specific COM APIs and interfaces that apply to memory management are discussed further below.
Remember that these memory management conventions for COM applications apply only across public
interfaces and APIs—there is no requirement  at all  that  memory allocation strictly internal  to a COM
application need be done using these mechanisms.

1.3The COM Client/Server Model
Chapter  1  mentioned  how COM supports  a  model  of  client/server  interaction  between  a  user  of  an
object’s services, the client, and the implementor of that object and its services, the server. To be more
2 Any internally-used  memory  in  COM and  in-process  objects  can  use  any  allocation  scheme  desired,  but  the  COM memory

allocator is a handy, efficient, and thread-safe allocator.
3 This rule is stronger than it might seem to need to be in order to promote more robust application interoperability.
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precise, the client is  any  piece of code (not necessarily an application) that somehow obtains a pointer
through which it can access the services of an object  and then invokes those services when necessary.
The server is some piece of code that implements the object and structures in such a way that the COM
Library  can  match  that  implementation  to  a  class  identifier,  or  CLSID.  The  involvement  of  a  class
identifier is what differentiates a server from a more general object implementor.
The COM Library uses the CLSID to provide “implementation locator” services to clients. A client need
only tell COM the CLSID it wants and the type of server—in-process, local, or remote—that it allows
COM to  load  or  launch.  COM,  in  turn,  locates  the  implementation  of  that  class  and  establishes  a
connection between it and the client. This relationship between client, COM, and server is illustrated in
Figure 2-2 on the next page.
Chapter  1 also introduced the idea of Location transparency,  where clients  and servers never  need to
know how far apart they actually are, that is, whether they are in the same process, different processes, or
different machines.
This section now takes a closer look at the mechanisms in COM that make this transparency work as well
as the responsibilities of client and server applications.

Client
Application

COM

Server

Object

(1) “Create
Object” (2) Locate

implementation

(3)  Get object
interface iointer,
return to Client

(4) Call interface
members

Figure 2-2: Clients locate and access objects through implementation locator
services in COM. COM then connects the client to the object in a server. Compare

this with Figure 1-2 in Chapter 1.

1.3.1COM Objects and Class Identifiers
A COM class is a particular implementation of certain interfaces; the implementation consists of machine
code that  is executed whenever you interact  with an instance of the COM class.  COM is designed to
allow a class to be used by different applications, including applications written without knowledge of
that particular class’s existence. Therefore class code exists either in a dynamic linked library (DLL) or in
another application (EXE). COM specifies a mechanism by which the class code can be used by many
different applications.
A COM object is an object that is identified by a unique 128-bit CLSID that associates an object class with
a particular  DLL or  EXE in the file system. A  CLSID is a  GUID itself (like an interface identifier),  so no
other class, no matter what vendor writes it, has a duplicate CLSID. Servers implementors generally obtain
CLSIDs through the  CoCreateGUID function in COM, or through a COM-enabled tool that internally calls
this function.
The use of unique CLSIDs avoids the possibility of name collisions among classes because CLSIDs are in
no way connected to the names used in the underlying implementation. So, for example,  two different
vendors can write classes which they call  “StackClass,” but each will have a unique  CLSID and therefore
avoid any possibility of a collision.
Further,  no central  authoritative  and  bureaucratic  body is needed  to allocate  or  assign  CLSIDs.  Thus,
server implementors across the world can independently develop and deploy their software without fear
of accidental collision with software written by others.
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On its host system, COM maintains a registration database (or “registry”) of all the CLSIDs for the servers
installed on the system, that is, a mapping between each  CLSID and the location of the  DLL or  EXE that
houses  the  server  for  that  CLSID.  COM consults  this  database  whenever  a  client  wants  to  create  an
instance of a COM class and use its services. That client, however, only needs to know the CLSID which
keeps it independent of the specific location of the DLL or EXE on the particular machine.
If  a  requested  CLSID is  not  found  in  the  local  registration  database,  various  other  administratively-
controlled  algorithms  are  available  by  which  the  implementation  is  attempted  to  be  located  on  the
network to which the local machine may be attached; these are explained in more detail below.
Given a  CLSID, COM invokes a part of itself called the Service Control Manager (SCM 4) which is the
system element that locates the code for that  CLSID. The code may exist as a  DLL or  EXE on the same
machine or on another machine:  the  SCM isolates most of COM, as well  as all  applications,  from the
specific  actions  necessary  to  locate  code.  We’ll  return  a  discussion  of  the  SCM in  a  moment  after
examining the roles of the client and server applications.

1.3.2COM Clients
Whatever application  passes a  CLSID to COM and asks for an instantiated  object  in return is a COM
Client. Of course, since this client uses COM, it is also a COM application that must perform the required
steps described above and in subsequent chapters.
Regardless of the type of server in use (in-process, local, or remote), a COM Client always asks COM to
instantiate objects in exactly the same manner. The simplest method for creating one object is to call the
COM function CoCreateInstance. This creates one object of the given CLSID and returns an interface pointer
of whatever type the client  requests.  Alternately,  the client  can obtain an interface  pointer  to what is
called the “class factory” object for a CLSID by calling CoGetClassObject. This class factory supports an
interface  called  IClassFactory through which the client  asks that  factory to manufacture an object  of its
class. At that  point the client  has interface  pointers for  two separate objects,  the class factory and an
object  of  that  class,  that  each  have  their  own  reference  counts.  It’s  an  important  distinction  that  is
illustrated in Figure 2-3 and clarified further in Chapter 5.

Class Factory

Object

Server

Client
(1) “Create
an Object”

(2) Manufacture
Object

(3)  Return new
interface pointer

to client

Figure 2-3: A COM Client creates objects through a class factory.

The CoCreateInstance function internally calls  CoGetClassObject itself. It’s just a more convenient function
for clients that want to create one object.
The  bottom  line  is  that  a  COM Client,  in  addition  to  its  responsibilities  as  a  COM application,  is
responsible to use COM to obtain a class factory, ask that factory to create an object, initialize the object,
and to call that object’s (and the class factory’s) Release function when the client is finished with it. These
steps are the bulk of Chapter 5 which also explains some features of COM that allow clients to manage
when servers are loaded and unloaded to optimize performance.

1.3.3COM Servers
There are two basic kinds of object servers:

4  Colloquially, of course, pronounced “scum.”
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· Dynamic Link Library (DLL) Based:  The server is implemented in a module that can be loaded
into,  and  will  execute  within,  a  client’s  address  space.   (The  term  DLL  is  used  in  this
specification  to  describe  any  shared  library  mechanism  that  is  present  on  a  given  COM
platform.)

· EXE Based: The server is implemented as a stand-alone executable module.
Since COM allows for distributed objects, it also allows for the two basic kinds of servers to implemented
on a remote machine. To allow client applications to activate remote objects, COM defines the Service
Control Manager (SCM) whose role is described below under “The COM Library.”
As a client is responsible for using a class factory and for server management, a server is responsible for
implementing the class factory, implementing the class of objects that the factory manufactures, exposing
the class factory to COM, and providing for unloading the server under the right conditions. A diagram
illustrating what exists inside a server module (EXE or DLL) is shown in Figure 2-4.

IClassFactory Class Factory:
creates Object

Object
Object Interfaces

(as many as desired)

Exposure for
    class factory

Unloading
    mechanism

Implementation
differs for DLLs

and EXEs.

Implementation
identical for any

module.

Server Module
Figure 2-4: The general structure of a COM server.

How a server accomplishes these requirements depends on whether the server is implemented as a DLL or
EXE,  but  is  independent  of  whether  the  server  is  on the  same  machine  as  the  client  or  on a  remote
machine. That is, remote servers are the same as local servers but have been registered to be visible to
remote clients. Chapter 6 goes into all the necessary details about these implementations as well as how
the server publishes its existence to COM in the registration database.
A special kind of server is called an “custom object handler” that works in conjunction with a local server
to provide  a partial  in-process  implementation  of  an object  class. 5 Since  in-process  code is normally
much faster to load, in-process calls are extremely fast,  and certain resources can be shared only within a
single process space, handlers can help improve performance of general object operations as well as the
quality of operations such as printing. An object handler is architecturally similar to an in-process server
but with more specialized semantics for its use. While the client can control the loading of handlers, it
doesn’t have to do any special work whatsoever to work with them. The existence of a handler changes
nothing for clients.

1.3.4The COM Library and Service Control Manager
As described in Chapter 1, the COM Library itself is the implementation of the standard API functions
defined in COM along with support for communicating between objects and clients. The COM Library is
then  the  underlying  “plumbing”  that  makes  everything  work  transparently  through RPC as  shown in
Figure 2-5 (this the same figure as Figure 1-8 in Chapter 1, repeated here for convenience). Whenever
5 Strictly  speaking,  the  “handler”  is simply  the representative  of a remote  object  that resides in the  client’s process  and which

internally contains the remote connection. There is thus always a handler present when remoting is being done, though very often
the handler is a trivial one which merely forwards all calls. In that sense, “handler” is synonymous with the terms “proxy object” or
“object proxy.” In practice the term “handler” tends to be used more when there is in fact a non-trivial handler, with “proxy”
usually used when the handler is in fact trivial.
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COM determines that it has to establish communication between a client and a local or remote server, it
creates  “proxy” objects  that  act  as in-process  objects  to  the  client.  These  proxies  then talk to  “stub”
objects that are in the same process as the server and can call the server directly. The stubs pick up RPC
calls from the proxies, turn them into function calls to the real object, then pass the return values back to
the  proxy via  RPC which  in  turn  returns  them  to  the  client. 6 The  underlying  remote  procedure  call
mechanism is based on the standard DCE remote procedure call mechanism.

In-Process
Object

Client
Application

Local
Object
Proxy

Remote
Object
Proxy

In-Process Server

COM

Client Process

RPC

RPC

Local
Object

Local Server

Stub

COM

Local Server Process

Remote
Object

Remote Server

Stub

COM

Remote Server Process

Remote Machine

Figure 2-5: COM provides transparent access to local and remote servers
through proxy and stub objects.

1.3.5Architecture for Distributed Objects
The COM architecture for object distribution is similar to the remoting architecture. When a client wants
to connect to a server object,  the name of the server is stored in the system registry.  With distributed
objects, the server can implemented as an in-process DLL, a local executable, or as executable or DLL
running remotely. A component called the Service Control Manager (SCM) is responsible for locating the
server and running it. The next section, “The Service Control Manager”, explains the role of the SCM in
greater depth and Chapter 15 contains the specification for it’s interfaces.
Making a call to an interface method in a remote object involves the cooperation of several components.
The interface  proxy is a piece of interface-specific  code that  resides in the client’s process space and
prepares the interface parameters for transmittal. It packages, or marshals, them in such a way that they
can be recreated and understood in the receiving process. The interface stub, also a piece of interface-
specific  code,  resides  in  the  server’s  process  space  and  reverses  the  work  of  the  proxy.  The  stub
unpackages, or unmarshals, the sent parameters and forwards them on to the server. It also packages reply
information to send back to the client.
The actual  transmitting of the data across the network is handled by the RPC runtime library and the
channel,  part  of  the  COM library.  The  channel  works transparently  with different  channel  types and
supports both single and multi-threaded applications.
The flow of communication between the components involved in interface remoting is shown in Figure
2-6. On the client side of the process boundary, the client’s method call goes through the proxy and then
onto  the  channel.  Note  that  the  channel  is  part  of  the  COM library.  The  channel  sends  the  buffer

6 Readers more familiar with RPC than with COM will recognize “client stub” and “server stub” rather than “proxy” and “stub” but
the phrases are analogous.
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containing  the  marshaled  parameters  to  the  RPC runtime  library  who transmits  it  across  the  process
boundary. The RPC runtime and the COM libraries exist on both sides of the process.

COM Library

Process
Boundary

Client

Proxy

Channel

RPC Runtime

Transport

COM Library         

Object

Stub

Channel

RPC Runtime

Transport

Figure 2-6. Components of COM’s distributed architecture.

1.3.6The Service Control Manager
The  Service  Control  Manager  ensures  that  when  a  client  request  is  made,  the  appropriate  server  is
connected and ready to receive the request. The SCM keeps a database of class information based on the
system registry  that  the  client  caches  locally  through the  COM library.  This  is  the  basis  for  COM’s
implementation locator services as shown in Figure 2-7.
When a client makes a request to create an object of a CLSID, the COM Library contacts the local SCM
(the one on the same machine) and requests that the appropriate server be located or launched, and a class
factory returned to the COM Library. After that, the COM Library, or the client, can ask the class factory
to create an object.
The actions taken by the local SCM depend on the type of object server that is registered for the CLSID:

In-Process The SCM returns the file path of the DLL containing the object server
implementation. The COM library then loads the DLL and asks it for 
its class factory interface pointer.

Local The SCM starts the local executable which registers a class factory on
startup. That pointer is then available to COM.

Remote The local SCM contacts the SCM running on the appropriate remote 
machine and forwards the request to the remote SCM. The remote 
SCM launches the server which registers a class factory like the local 
server with COM on that remote machine. The remote SCM then 
maintains a connection to that class factory and returns an RPC 
connection to the local SCM which corresponds to that remote class 
factory. The local SCM then returns that connection to COM which 
creates a class factory proxy which will internally forward requests to 
the remote SCM via the RPC connection and thus on to the remote 
server.
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Figure 2-7: COM delegates responsibility of loading and launching servers to the SCM.Note that if the
remote SCM determines that the remote server is actually an in-process server, it launches a “surrogate”
server that then loads that in-process server. The surrogate does nothing more than pass all requests on
through to the loaded DLL.

1.3.7Application Security
The technology  in COM provides  security  for  applications,  regardless  of  whether  they  run remotely.
There is a default level of security that is provided to non-security-aware applications such as existing
OLE applications.  Beyond the default,  applications that  are security-aware can control  who is granted
access to their services and the type of access that is granted.

Figure  2-8.  A  non-security-aware  serverDefault  security  insures  that  system  integrity  is  maintained.
When multiple users require the services of a single non-security-aware server,  a separate instance for
each user is run. Each client/server connection remains independent from the others, preventing clients
from accessing each others’ data.  All non-security-aware servers are run as the security principal  who
caused them to run. An example involving four clients that all require server “X” is illustrated in Figure
2-8. Since two of the clients are the same user (User2), one instance of server X can service both clients.
The technology used in COM for distribution implements this security  system with the authentication
services provided by RPC. These services are accessed by applications through the COM library when a
call  is  made  to  CoInitialize.  This  security  system  imposes  a  restriction  on  where  non-security-aware
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applications can  run.  Since  the  system cannot  start  a  session on another  machine  without  the proper
credentials, all servers that run in the client security context normally run where their client is running.
The AtBits attribute associated with that class controls where a server is run.
Security-aware  servers  are those applications that  do not allow global  access to their  services.  These
servers may run either where the client is running, where their data is stored, or elsewhere depending on a
rich  set  of  activation  rules.  Rather  than  running  as  one  of  their  clients;  security-aware  servers  are
themselves  security  principals.  Security-aware  servers  may  participate  in  two-way  authentication
whereby clients can ask for verification. Security-aware servers can use the services offered by the RPC
security provider(s) or supply their own security implementation.

1.4Object Reusability
An important goal of any object model is that component authors can reuse and extend objects provided
by others as pieces of their own component implementations. Implementation inheritance is one way this
can be achieved: to reuse code in the process of building a new object, you inherit implementation from it
and override methods in the tradition of C++ and other languages. However, as a result of many years
experience, many people believe traditional language-style implementation inheritance technology as the
basis  for  object  reuse  is simply not  robust  enough for  large,  evolving  systems composed  of software
components. (See page  Error: Reference source not found for more information.) For this reason COM
introduces other reusability mechanisms.

1.4.1COM Reusability Mechanisms
The  key  point  to  building  reusable  components  is  black-box  reuse  which  means  the  piece  of  code
attempting to reuse another component knows nothing, and does not need to know anything, about the
internal structure or implementation of the component being used. In other words, the code attempting to
reuse a component depends upon the behavior of the component and not the exact implementation.
To achieve black-box reusability, COM supports two mechanisms through which one object may reuse
another. For convenience, the object being reused is called the “inner object” and the object making use
of that inner object is the “outer object.”

1. Containment/Delegation: the outer object behaves like an object client to the inner 
object. The outer object “contains” the inner object and when the outer object 
wishes to use the services of the inner object the outer object simply delegates 
implementation to the inner object’s interfaces. In other words, the outer object 
uses the inner’s services to implement itself. It is not necessary that the outer and 
inner objects support the same interfaces; in fact, the outer object may use an inner 
object’s interface to help implement parts of a different interface on the outer 
object especially when the complexity of the interfaces differs greatly.

2. Aggregation: the outer object wishes to expose interfaces from the inner object as if 
they were implemented on the outer object itself. This is useful when the outer 
object would always delegate every call to one of its interfaces to the same 
interface of the inner object. Aggregation is a convenience to allow the outer object
to avoid extra implementation overhead in such cases.

These  two  mechanisms  are  illustrated  in  Figures  2-9  and  2-10.  The  important  part  to  both  these
mechanisms is how the outer object appears to its clients. As far as the clients are concerned, both objects
implement interfaces A, B, and C. Furthermore, the client treats the outer object as a black box, and thus
does not care, nor does it need to care, about the internal structure of the outer object—the client only
cares about behavior.
Containment  is simple  to  implement  for  an outer  object:  during its  creation,  the  outer  object  creates
whatever inner objects it needs to use as any other client would. This is nothing new—the process is like
a C++ object that itself contains a C++ string object that it uses to perform certain string functions even if
the outer object is not considered a “string” object in its own right.
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Figure 2-9: Containment of an inner object and delegation to its interfaces.
Aggregation is almost as simple to implement,  the primary difference being the implementation of the
three  IUnknown functions:  QueryInterface,  AddRef,  and Release.  The  catch  is  that  from  the  client’s
perspective,  any  IUnknown function on the outer object must affect  the outer object. That is,  AddRef and
Release affect the outer object and QueryInterface exposes all the interfaces available on the outer object.
However, if the outer object simply exposes an inner object’s interface as it’s own, that inner object’s
IUnknown members called through that interface will behave differently than those IUnknown members on
the outer object’s interfaces, a sheer violation of the rules and properties governing IUnknown.
The solution is for the outer object to somehow pass the inner object some IUnknown pointer to which the
inner object can re-route (that is, delegate)  IUnknown calls in its own interfaces, and yet there must be a
method through which the outer object can access the inner object’s  IUnknown functions that only affect
the inner object. COM provides specific support for this solution as described in Chapter 6.

Inner Object:
Contained inside

Outer Object
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C
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A, B, and C

IUnknown
controls Inner
Object lifetime

Outer Object

Inner Object’s
C exposed directly
from Outer Object

External
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Inner Object
delegates IUnknown
calls to Outer Object

Figure 2-10: Aggregation of an inner object where the outer object exposes one or
more of the inner object’s interfaces as it’s own.

1.5Connectable Objects and Events
In the preceding discussions of interfaces it was implied that, from the object’s perspective, the interfaces
were  “incoming”.   “Incoming,”  in  the  context  of  a  client-object  relationship,  implies  that  the  object
“listens” to what the client has to say.  In other words, incoming interfaces and their member functions
receive input from the outside.   COM also defines mechanisms where objects can support  “outgoing”
interfaces.  Outgoing interfaces  allow objects to have two-way conversations, so to speak, with clients.
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When an object supports one or more outgoing interfaces, it is said to be connectable.  One of the most
obvious  uses  for  outgoing  interfaces  is  for  event  notification.   This  section  describes  Connectable
Objects.7

A  connectable  object  (also called a  source) can have as many outgoing interfaces  as it  likes.   Each
interface  is  composed  of  distinct  member  functions,  with  each  function  representing  a  single  event,
notification,  or request.  Events and notifications are equivalent concepts (and interchangeable terms), as
they  are  both  used  to  tell  the  client  that  something  interesting  happened  in  the  object.   Events  and
notifications differ from a request in that the object expects response from the client.  A request, on the
other hand, is how an object asks the client a question and expects a response.
In all of these cases, there must be some client that listens to what the object has to say and uses that
information wisely.  It is the client, therefore, that actually implements these interfaces on objects called
sinks.  From the sink’s perspective,  the interfaces  are incoming,  meaning that  the sink listens through
them.  A connectable object plays the role of a client as far as the sink is concerned; thus, the sink is what
the object’s client uses to listen to that object.  
An object doesn’t necessarily have a one-to-one relationship with a sink. In fact, a single instance of an
object usually supports any number of connections to sinks in any number of separate clients.  This is
called multicasting.8  In addition, any sink can be connected to any number of objects. 
Chapter  11  covers  the  Connectable  Object  interfaces  (IConnectionPoint  and  IConnectionPointContainer)  in
complete detail.

1.6Persistent Storage
As mentioned in Chapter 1, the enhanced COM services define a number of storage-related interfaces,
collectively  called  Persistent  Storage  or Structured  Storage.  By definition of the term  interface,  these
interfaces carry no implementation. They describe a way to create a “file system within a file,” and they
provide some extremely powerful features for applications including incremental access, transactioning,
and a sharable medium that can be used for data exchange or for storing the persistent data of objects that
know how to read  and write  such data  themselves.  The following sections deal  with the structure  of
storage and the other features.

1.6.1A File System Within A File
Years ago, before there were “disk operating systems,” applications had to write persistent data directly
to  a  disk  drive  (or  drum)  by  sending  commands  directly  to  the  hardware  disk  controller.  Those
applications were responsible for managing the absolute location of the data on the disk, making sure that
it was not overwriting data that was already there. This was not too much of a problem seeing as how
most disks were under complete control of a single application that took over the entire computer.
The advent of computer systems that could run more than one application brought about problems where
all the applications had to make sure they did not write over each other’s data on the disk. It therefore
became beneficial  that each adopted a standard of marking the disk sectors that  were used and which
ones  were  free.  In  time,  these  standards  became  the  “disk  operating  system”  which  provided  a  “file
system.” Now, instead of dealing directly with absolute disk sectors and so forth, applications simply told
the file system to write blocks of data to the disk. Furthermore, the file system allowed applications to
create  a  hierarchy  of information  using directories  which  could  contain  not  only files  but  other  sub-
directories which in turn contained more files, more sub-directories, etc.
The file system provided a single level of indirection between applications and the disk, and the result
was that  every application saw a file as a single contiguous stream of bytes on the disk.  Underneath,
however, the file system was storing the file in dis-contiguous sectors according to some algorithm that
optimized  read  and  write  time  for  each  file.  The  indirection  provided  from  the  file  system  freed
applications from having to care about the absolute position of data on a storage device.
Today, virtually all system APIs for file input and output provide applications with some way to write
information into a flat  file  that  applications see as a single stream of bytes that  can grow as large as
7  OLE Controls use the Connectable Objects mechanisms extensively.
8  Note that this usage of the term multicasting may differ from what some readers are accustomed to.  In some systems

multicasting is used to describe a connection-less broadcast.  Connectable objects are obviously connection oriented.
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necessary until the disk is full. For a long time these APIs have been sufficient for applications to store
their persistent information. Applications have made some incredible innovations in how they deal with a
single stream of information to provide features like incremental “fast” saves.
However, a major feature of COM is interoperability, the basis for integration between applications. This
integration brings with it the need to have multiple applications write information to the same file on the
underlying file system. This is exactly the same problem that the computer industry faced years ago when
multiple applications began to share the same disk drive. The solution then was to create a file system to
provide a level of indirection between an application “file” and the underlying disk sectors.
Thus, the solution for the integration problem today is another level of indirection: a file system within a
file. Instead of requiring that a large contiguous sequence of bytes on the disk be manipulated through a
single file handle with a single seek pointer, COM defines how to treat a single file system entity as a
structured collection of two types of objects—storages and streams—that act like directories and files,
respectively.

1.6.2Storage and Stream Objects
Within COM’s Persistent Storage definition there are two types of storage elements: storage objects and
stream objects. These are objects generally implemented by the COM library itself; applications rarely, if
ever,  need  to  implement  these  storage  elements  themselves. 9 These  objects,  like  all  others  in  COM,
implement interfaces: IStream for stream objects, IStorage for storage objects as detailed in Chapter 8.
A stream object  is  the  conceptual  equivalent  of  a  single  disk file  as we understand  disk files  today.
Streams are the basic file-system component in which data lives,  and each stream in itself has access
rights and a single seek pointer. Through its IStream interface stream can be told to read, write, seek, and
perform a few other operations on its underlying data. Streams are named by using a text string and can
contain any internal structure you desire because they are simply a flat stream of bytes. In addition, the
functions in the IStream interface map nearly one-to-one with standard file-handle based functions such
as those in the ANSI C run-time library.
A storage object is the conceptual equivalent of a directory. Each storage, like a directory, can contain
any  number  of  sub-storages  (sub-directories)  and  any  number  of  streams  (files).  Furthermore,  each
storage has its own access rights. The IStorage interface describes the capabilities of a storage object such
as enumerate elements (dir),  move, copy, rename,  create,  destroy, and so forth. A storage object itself
cannot store application-defined data except that it implicitly stores the names of the elements (storages
and streams) contained within it.
Storage and stream objects, when implemented by COM as a standard on a system, are sharable between
processes. This is a key feature that enables objects running in-process or out-of-process to have equal
incremental access to their on-disk storage. Since COM is loaded into each process separately, it must use
some operating-system supported shared memory mechanisms to communicate between processes about
opened elements and their access modes.

1.6.3Application Design with Structured Storage
COM’s  structured  storage  built  out  of  storage  and  stream  objects  makes  it  much  easier  to  design
applications that by their nature produce structured information. For example, consider a “diary” program
that allows a user to make entries for any day of any month of any year. Entries are made in the form of
some kind of object that itself manages some information. Users wanting to write some text into the diary
would store a text  object;  if they wanted to save a scan of a newspaper clip they could use a bitmap
objects, and so forth.

9 This specification recommends that the COM implementation on a given platform (Windows, Macintosh, etc.) includes a standard
storage implementation for use by all applications.
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Without a powerful means to structure information of this kind, the diary application might be forced to
manage some hideous file structure with an overabundance of file position cross-reference pointers as
shown in Figure 2-11.
There are many problems in trying to put structured information into a flat file. First, there is the sheer
tedium of managing all the cross-reference pointers in all the different structures of the file. Whenever a
piece of information grows or moves in the file, every cross-reference offset referring to that information
must  be updated  as well.  Therefore  even  a small  change in the size of one of the text  objects  or an
addition of a day or month might precipitate changes throughout the rest of the file to update seek offsets.
While not only tedious to manage, the application will have to spend enormous amounts of time moving
information around in the file to make space for data that expands. That, or the application can move the
newly enlarged data to the end of the file and patch a few seek offsets,  but that  introduces the whole
problem  of  garbage  collection,  that  is,  managing  the  free  space  created  in  the  middle  of  the  file  to
minimize waste as well as overall file size.
The problems are compounded even further with objects that are capable of reading and writing their own
information to storage. In the example here, the diary application would prefer to give each objects in it
—text, bitmap, drawing, table, etc.—its own piece of the file in which the object can write whatever the
it wants, however much it wants. The only practical way to do this with a single flat file is for the diary
application to ask each object for a memory copy of what the object would like to store, and then the
diary would write that information into a place in its own file. This is really the only way in which the
diary could manage the location of all the information. Now while this works reasonably well for small
data, consider an object that wants to store a 10MB bitmap scan of a true-color photograph—exchanging
that much data through memory is horribly inefficient. Furthermore, if the end user wants to later make
changes to that bitmap, the diary would have to load the bitmap in entirety from its file and pass it back
to the object. This is again extraordinarily inefficient.10

COM’s Persistent  Storage technology solves these problems through the extra level  of indirection of a

file system within a file. With COM, the diary application can create a structured hierarchy where the
root file itself has sub-storages for each year in the diary.  Each year sub-storage has a sub-storage for
each month, and each month has a sub-storage for each day. Each day then would have yet another sub-

10 This mechanism, in fact, was employed by compound documents in Microsoft’s OLE version 1.0. The problems describe here were
some of the major limitations of OLE 1.0 which provided much of the impetus for COM’s Persistent Storage technology.
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Figure 2-11: A flat-file structure for a diary application. This
sort of structure is difficult to manage.
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storage or perhaps just  a stream for each  piece  of information that  the user  stores in that  day. 11 This
configuration is illustrated in Figure 2-12.

Stream

Storage
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Year
Year Header

Month...
Month...

Month

Month Header

Day...

Day...

Text Object

Text

Day

Day Header

Drawing Object

MetafileBitmap Object

Bits

Format Info

Figure 2-12: A structured storage scheme for a diary application. Every object that has
some content is given its own storage or stream element for its own exclusive use.

This structure solves the problem of expanding information in one of the objects: the object itself expands
the  streams in its  control  and the COM implementation  of storage  figures  out  where  to  store  all  the
information in the stream.  The diary application doesn’t  have to lift  a finger.  Furthermore,  the COM
implementation  automatically  manages  unused  space  in  the  entire  file,  again,  relieving  the  diary
application of a great burden.
In  this  sort  of  storage  scheme,  the  objects  that  manage  the  content  in  the  diary  always  have  direct
incremental  access to their piece of storage. That is, when the object needs to store its data, it writes it
directly into the diary file  without having to involve the diary application itself.  The object  can,  if  it
wants to, write incremental changes to that storage, thus leading to much better performance than the flat
file scheme could possibly provide. If the end user wanted to make changes to that information later on,
the object can then incrementally read as little information as necessary instead of requiring the diary to
read all the information into memory first. Incremental access, a feature that has traditionally been very
hard to implement in applications, is now the default mode of operation. All of this leads to much better
performance.

1.6.4Naming Elements
Every storage and stream object in a structured file has a specific character  name to identify it.  These
names are  used to tell  IStorage functions what  element  in that  storage  to open,  destroy, move,  copy,
rename, etc. Depending on which component, client or object, actually defines and stores these names,
different conventions and restrictions apply.
Names of root storage objects are in fact names of files in the underlying file system. Thus, they obey the
conventions and restrictions that it imposes. Strings passed to storage-related functions which name files
are passed on un-interpreted and unchanged to the file system.
Names of elements contained within storage objects are managed by the implementation of the particular
storage  object  in  question.  All  implementations  of  storage  objects  must  at  the  least  support  element

11 The application would only create year, month, and day substorages for those days that had information in them, that is, the diary
application would create sparse storage for efficiency.
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names that are 32 characters in length; some implementations may if they wish choose to support longer
names. Names are stored case-preserving, but are compared case-insensitive. 12 As a result, applications
which define element names must choose names which will work in either situation.
The names of elements inside an storage object must conform to certain conventions:
1. The two specific names “.” and “..” are reserved for future use.
2. Element names cannot contain any of the four characters “\”, “/”, “:”, or “!”.
In  addition,  the  name  space  in  a  storage  element  is  partitioned  in  to  different  areas  of  ownership.
Different pieces of code have the right to create elements in each area of the name space.
· The set  of  element  names  beginning  with characters  other  than  ‘\0x01’ through ‘\0x1F’  (that  is,

decimal 1 through decimal 31) are for use by the object whose data is stored in the  IStorage.
Conversely, the object must not use element names beginning with these characters.

· Element names beginning with a ‘\0x01’ and ‘\0x02’ are for the exclusive use of COM and other system
code built on it such as OLE Documents.

· Element names beginning with a ‘\0x03’ are for the exclusive use of the client which is managing the
object. The client can use this space as a place to persistently store any information it wishes to
associate with the object along with the rest of the storage for that object.

· Element names beginning with a ‘\0x04’ are for the exclusive use of the COM structured storage
implementation  itself.  They  will  be  useful,  for  example,  should that  implementation  support
other interfaces in addition to IStorage, and these interface need persistent state.

· Element names beginning with ‘\0x05’ and ‘\0x06’ are for the exclusive use of COM and other system
code built on it such as OLE Documents.

· All other names beginning with ‘\0x07’ through ‘\0x1F’ are reserved for future definition and use by the
system.

In general, an element’s name is not considered useful to an end-user. Therefore, if a client wants to store
specific user-readable names of objects, it usually uses some other mechanism. For example, the client
may write its own stream under one of its own storage elements that has the names of all the other objects
within that  same storage element.  Another  method would be for the client  to store a stream named  “\
0x03Name” in each object’s storage that would contain that object’s name. Since the stream name itself
begins with ‘\0x03’ the client owns that stream even through the objects controls much of the rest of that
storage element.

1.6.5Direct Access vs. Transacted Access
Storage  and  stream elements  support  two fundamentally  different  modes  of  access:  direct  mode  and
transacted  mode.  Changes made while  in  direct  mode are  immediately  and permanently  made to  the
affected  storage  object.  In  transacted  mode,  changes  are  buffered  so  that  they  may  be  saved
(“committed”) or reverted when modifications are complete.
If  an  outermost  level  IStorage is  used  in  transacted  mode,  then  when it  commits,  a  robust  two-phase
commit operation is used to publish those changes to the underlying file on the file system. That is, great
pains are taken are taken so as not to loose the user’s data should an untimely crash occurs.
The need for transacted mode is best explained by an illustrative scenario. Imagine that a user has created
a spreadsheet which contains a sound clip object, and that the sound clip is an object that uses the new
persistent storage facilities provided in COM. Suppose the user opens the spreadsheet, opens the sound
clip, makes some editing changes, then closes the sound clip at which point the changes are updated in
the spreadsheet storage set aside for the sound clip. Now, at this instant, the user has a choice: save the
spreadsheet  or  close  the  spreadsheet  without  saving.  Either  way,  the  next  time  the  user  opens  the
spreadsheet, the sound clip had better be in the appropriate state. This implies that at the instant before
the save vs. close decision was made, both the old and the new versions of the sound clip had to exist.
Further, since large objects are precisely the ones that are expensive in time and space to copy, the new
version should exist as a set of differences from the old.
12  Case sensitivity is a locale-sensitive operation: some characters compare case-insenstive-equal in some locales and -not-

equal in others. In an IStorage implementation, the case-insenstive comparision is done with respect to the current locale in which
the system is presently running. This has implications on the use of IStorage names for those who wish to create globally portable
documents.
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The  central  issue  is  whose  responsibility  it  is  to  keep  track  of  the  two  versions.  The  client  (the
spreadsheet in this example) had the old version to begin with, so the question really boils down to how
and when does the object  (sound clip) communicate  the new version to the spreadsheet.  Applications
today are in general already designed to keep edits separate from the persistent copy of an object until
such time as the user does a save or update. Update time is thus the earliest time at which the transfer
should occur. The latest is immediately before the client saves itself. The most appropriate time seems to
be one of these two extremes; no intermediate time has any discernible advantage.
COM specifies that this communication happens at the earlier time. When asked to update edits back to
the client, an object using the new persistence support will write any changes to its storage) exactly as if
it were doing a save to its own storage completely outside the client. It is the responsibility of the client
to  keep  these  changes  separate  from the  old  version  until  it does  a  save  (commit)  or  close  (revert).
Transacted mode on IStorage makes dealing with this requirement easy and efficient.
The transaction on each storage is nested in the transaction of its parent  storage.  Think of the act  of
committing a transaction on an IStorage instance as “publishing changes one more level outwards.” Inner
objects publish changes to the transaction of the next object outwards; outermost objects publish changes
permanently into the file system.
Let’s examine for a moment the implications of using instead the second option, where the object keeps
all editing changes to itself until it is known that the user wants to commit the client (save the file). This
may happen many minutes  after  the contained  object  was edited.  COM must  therefore  allow for  the
possibility that in the interim time period the user closed the server used to edit the object, since such
servers may consume significant  system resources.  To implement  this second option,  the server  must
presumably keep the changes to the old version around in a set of temporary files (remember, these are
potentially big objects). At the client’s commit time, every server would have to be restarted and asked to
incorporate any changes back onto its persistent storage. This could be very time consuming, and could
significantly slow the save operation. It would also cause reliability concern in the user’s mind: what if
for some reason (such as memory resources) a server cannot be restarted? Further, even when the client is
closed without saving, servers have to be awakened to clean up their temporary files. Finally, if a object
is edited a second time before the client is committed, in this option its the client can only provide the
old, original storage, not the storage that has the first edits. Thus, the server would have to recognize on
startup that some edits to this object were lying around in the system. This is an awkward burden to place
on servers:  it  amounts  to  requiring that  they  all support  the  ability  to  do incremental  auto-save  with
automatic recovery from crashes. In short, this approach would significantly and unacceptably complicate
the responsibilities of the object implementors.
To that end, it makes the most sense that the standard COM implementation of the storage system support
transactioning through IStorage and possibly IStream.

1.6.6Browsing Elements
By its  nature,  COM’s structured  storage  separates  applications  from  the  exact  layout  of  information
within a given file.  Every element  of information in that  file  is access using functions and interfaces
implemented by COM. Because this implementation is central, a file generated by some application using
this structure can be browsed by some other piece of code, such as a system shell. In other words, any
piece  of  code  in  the  system  can  use  COM to  browse  the  entire  hierarchy  of  elements  within  any
structured  file  simply by navigating  with the  IStorage interface  functions which  provide  directory-like
services.  If that  piece  of code also knows the format  and the meaning of a specific  stream that  has a
certain name, it could also open that stream and make use of the information in it, without having to run
the application that wrote the file.
This is a powerful enabling technology for operating system shells that want to provide rich query tools
to help end users look for information on their machine or even on a network. To make it really happen
requires standards for certain stream names and the format of those streams such that the system shell can
open the stream and execute queries against that information. For example, consider what is possible if
all applications created a stream called “Summary Information” underneath the root storage element of
the file. In this stream the application would write information such as the author of the document, the
create/modify/last saved time-stamps, title, subject, keywords, comments, a thumbnail sketch of the first
page,  etc.  Using this information the system shell  could find any documents  that  a certain  user write
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before a certain date or those that contained subject matter matched against a few keywords. Once those
documents are found, the shell can then extract the title of the document along with the thumbnail sketch
and give the user a very engaging display of the search results.
This all being said, in the general  the actual  utility of this capability is perhaps significantly less than
what one might first imagine. Suppose, for example, that I have a structured storage that contains some
word processing document whose semantics and persistent  representation I am unaware of, but which
contains some number of contained objects, perhaps the figures in the document, that I can identify by
their  being  stored  and  tagged  in  contained  sub-storages.  One  might  naively  think  that  it  would  be
reasonable to be able to walk in and browse the figures from some system-provided generic  browsing
utility. This would indeed work from a technical point of view; however, it is unlikely to be useable from
a user interface perspective. The document may contain hundreds of figures, for example, that the user
created and thinks about not with a name, not with a number, but only in the relationship of a particular
figure to the rest of the document’s information. With what user interface could one reasonably present
this list of objects to the user other than as some add-hoc and arbitrarily-ordered sequence? There is, for
example,  no name associated with each object  that  one could use to leverage a file-system directory-
browsing  user  interface  design.  In  general,  the  content of  a  document  can  only  be  reasonably  be
presented to a human being using a tool that understands the semantics of the document content, and thus
can show all of the information therein in its appropriate context.

1.6.7Persistent Objects
Because COM allows an object to read and write itself to storage, there must be a way through which the
client  tells  objects  to  do so.  The way is,  of course,  additional  interfaces  that  form a storage  contract
between the client and objects. When a client wants to tell and object to deal with storage, it queries the
object for one of the persistence-related interfaces, as suits the context.  The interfaces that objects can
implement, in any combination, are described below:

IPersistStorage Object can read and write its persistent state to a storage object. The 
client provides the object with an IStorage pointer through this 
interface. This is the only IPersist* interface that includes semantics for
incremental access.

IPersistStream Object can read and write its persistent state to a stream object. The 
client provides the object with an IStream pointer through this 
interface.

IPersistFile Object can read and write its persistent state to a file on the 
underlying system directly. This interface does not involve IStorage or 
IStream unless the underlying file is itself access through these 
interfaces, but the IPersistFile itself has no semantics relating to such 
structures. The client simply provides the object with a filename and 
orders to save or load; the object does whatever is necessary to fulfill 
the request.

These interfaces and the rules governing them are described in Chapter 12.

1.7Persistent, Intelligent Names: Monikers
To set the context for why “Persistent, Intelligent Names” are an important technology in COM, think for
a moment about a standard, mundane file name. That file name refers to some collection of data that
happens to be stored on disk somewhere. The file name describes the somewhere. In that sense, the file
name is really a name for a particular “object” of sorts where the object is defined by the data in the file.
The limitation is that a file name by itself is unintelligent; all the intelligence about what that filename
means and how it gets used, as well as how it is stored persistently if necessary, is contained in whatever
application is the client of that file name. The file name is nothing more than some piece of data in that
client. This means that the client must have specific code to handle file names. This normally isn’t seen
as much of a problem—most applications can deal with files and have been doing so for a long time.
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Now introduce some sort of name that describes a query in a database. The introduce others that describe
a file and a specific range of data within that file, such as a range of spreadsheet cells or a paragraph is a
document. Introduce yet more than identify a piece of code on the system somewhere that can execute
some interesting operation. In a world where clients have to know what a name means in order to use it,
those clients end up having to write specific code for each type of name causing that application to grow
monolithically in size and complexity. This is one of the problems that COM was created to solve.
In COM, therefore,  the intelligence of how to work with a particular  name is encapsulated inside the
name itself, where the name becomes an object that implements name-related interfaces. These objects
are called monikers.13 A moniker implementation provides an abstraction to some underlying connection
(or “binding”) mechanism. Each different moniker class (with a different CLSID) has its own semantics as
to what sort of object or operation it can refer to, which is  entirely  up to the moniker itself. A section
below describes  some typical  types  of  monikers.  While  a  moniker  class  itself  defines  the  operations
necessary to locate some general type of object or perform some general type of action, each individual
moniker  object  (each  instantiation)  maintains  its  own name data  that  identifies  some other  particular
object  or  operation.  The  moniker  class  defines  the  functionality;  a  moniker  object  maintains  the
parameters.
With monikers, clients always work with names through an interface,  rather than directly manipulating
the strings (or whatever) themselves. This means that whenever a client wishes to perform any operation
with a name, it calls some code to do it instead of doing the work itself. This level of indirection means
that the moniker can transparently provide a whole host of services, and that the client can seamlessly
interoperate over time with various different moniker implementations which implement these services in
different ways.

1.7.1Moniker Objects
A moniker is simply an object that supports the IMoniker interface.  IMoniker interface includes the IPersist-
Stream interface;14 thus,  monikers  can  be saved to  and loaded  from streams.  The persistent  form of a
moniker includes the data comprising its name and the CLSID of its implementation which is used during
the loading process. This allows new kinds of monikers to be created transparently to clients.
The most basic operation in the IMoniker interface is that of binding to the object to which it points. The
binding function in IMoniker takes as a parameter the interface identifier by which the client wishes to talk
to the bound object,  runs whatever algorithm is necessary in order to locate the object,  then returns a
pointer of that interface  type to the client.  The client  can also ask to bind to the object’s  storage (for
example, the IStorage containing the object) if desired, instead of to the running object through a slightly
different  IMoniker function.  As binding may be an expensive and time-consuming process,  a client  can
control  how long it  is willing to wait  for  the binding to complete.  Binding also takes  place  inside  a
specific “bind context” that is given to the moniker. Such a context enables the binding process overall to
be more efficient by avoiding repeated connections to the same object.
A moniker  also supports an operation called “reduction” through which it  re-writes itself into another
equivalent moniker that will bind to the same object, but does so in a more efficient way. This capability
is useful to enable the construction of user-defined macros or aliases as new kinds of moniker classes
(such  that  when  reduced,  the  moniker  to  which  the  macro  evaluates  is  returned)  and  to  enable
construction of a kind of moniker which tracks data as it moves about (such that when reduced, the new
moniker contains a reference to the new location). Chapter 9 will expand on the reduction concept.
Each moniker class can store arbitrary data its persistent  representation, and can run arbitrary code at
binding time. The client therefore only knows each moniker by the presence of a persistent representation
and whatever label the client wishes to assign to each moniker. For example,  a spreadsheet as a client
may keep, from the user’s perspective, a list of “links” to other spreadsheets where, in fact, each link was
an arbitrary label for a moniker (regardless of whether the moniker is loaded or persistently on disk at the
moment) where the moniker manages the real identity of the linked data. When the spreadsheet wants to
resolve a link for the user,  it  only has to ask the moniker  to bind to the object.  After  the binding is

13  The word “moniker” is fairly obscure synonym for “nickname.”
14 One of the few instances of inheritance from one major interface to another, which the IMoniker designer later decided was actually

less preferable to having a moniker implement IMoniker and IPersistStream separately. See the first footnote in Chapter 9.
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complete, the spreadsheet then has an interface pointer for the linked object and can talk to it directly—
the moniker falls out of the picture as its job is complete.
The label assigned to a moniker by a client does not have to be arbitrary. Monikers support the ability to
produce a “display name” for whatever object they represent that is suitable to show to an end user. A
moniker that maintains a file name (such that it can find an application to load that file) would probably
just use the file name directly as the display name. Other monikers for things such as a query may want to
provide a display name that is a little more readable than some query languages.

1.7.2Types of Monikers
As some of the examples above has hinted, monikers can have many types, or classes, depending on the
information they contain and the type of objects they can refer to. A moniker class is really defined by
the information it persistently maintains and the binding operation is uses on that information.
COM itself,  however,  only specifies one standard moniker  called the  generic composite moniker.  The
composite  moniker  is  special  in  two  ways.  First,  its  persistent  data  is  completely composed  of  the
persistent data of other monikers, that is, a composite moniker is a collection of other monikers. Second,
binding a composite moniker simply tells the composite to bind each moniker it contains in sequence.
Since the composite’s behavior and persistent state is defined by other monikers, it is a standard type of
moniker that works identically on any host system; the composite is generic because it has no knowledge
of its pieces except that they are monikers. Chapter 9 described the generic composite in more detail.
So  what  other  types  of  monikers  can  go  in  a  composite?  Virtually  any  other  type  (including  other
composite monikers!). However, other types of monikers are not so generic and have more dependency
on the underlying operating system or the scenarios in which such a moniker is used.
For example, Microsoft’s OLE defines four other specific monikers—file, item, anti, pointer—that it uses
specifically to help implement “linked objects” in its compound document technology. A file moniker,
for example,  maintains a file name as its persistent  data and its binding process is one of locating an
application that can load that file, launching the application, and retrieving from it an IPersistFile interface
through  which  the  file  moniker  can  ask  the  application  to  load  the  file.  Item  monikers  are  used  to
describe smaller portions of a file that might have been loaded with a file moniker, such as a specific
sheet of a three-dimensional spreadsheet or a range of cells in that sheet. To “link” to a specific cell range
in a specific sheet of a specific file, the single moniker used to describe the link is a generic composite
that is composed with a file moniker and two item monikers as illustrated in Figure 2-13. Each moniker
in the composite is one step in the path to the final source of the link.

C:\Q3RPT.DOC
File Moniker

SALESTBL
Item Moniker

R2C2:R7C4
Item Moniker

Moniker class

Display Name

Generic Composite Moniker

Figure 2-13: A composite moniker that is composed with a file moniker and two item monikers
to describe the source of a link which is a cell range in a specific sheet of a spreadsheet file.

More  complete  descriptions  of  the  file,  item,  anti,  and  pointer  monikers  from OLE  are  provided  in
Chapter 9 as examples of how monikers can be used. But monikers can represent virtually any type of
information and operation, and are not limited to this basic set of OLE defined monikers.

1.7.3Connections and Reconnections
How does a client come by a moniker in the first place? In other words, how does a client establish a
connection to some object and obtain a moniker that describes that connection? The answer depends on
the scenario involved but is generally one of two ways. First, the source of the object may have created a
moniker  and  made  it  available  for  consumption  through  a  data  transfer  mechanism  such  (in  the
workstation case) as a clipboard or perhaps a drag & drop operation. Second, the client may have enough
knowledge about a particular moniker class that it can synthesize a moniker for some object using other
known information such that the client can forget about that specific information itself and thereafter deal
only with monikers. So regardless of how a client obtains a moniker, it can simply ask the moniker to
bind to establish a connection to the object referred to by the moniker.
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Binding a moniker does not always mean that the moniker must run the object itself. The object might
already be running within some appropriate scope (such as the current desktop) by the time the client
wants to bind the moniker to it. Therefore the moniker need only connect to that running object.
COM supports this scenario through two mechanisms. The first is the  Running Object  Table in which
objects register themselves and their monikers when they become running. This table is available to all
monikers as they attempt to bind—if a moniker sees that a matching moniker in the table, it can quickly
connect to the already running object. 

1.8Uniform Data Transfer
Just as COM provides interfaces for dealing with storage and object naming, it also provides interfaces
for  exchanging  data  between  applications.  So  built  on  top  of  both  COM and  the  Persistent  Storage
technology  is  Uniform Data  Transfer,  which  provides  the  functionality  to  represent  all  data  transfers
through a single implementation of a data object. Data objects implement an interface called IDataObject
which  encompasses  the  standard  operations  of  get/set  data  and  query/enumerate  formats  as  well  as
functions through which a client of a data object can establish a notification loop to detect data changes
in the object. In addition, this technology enables use of richer descriptions of data formats and the use of
virtually any storage medium as the transfer medium.

1.8.1Isolation of Transfer Protocols
The “Uniform” in the name of this technology arose from the fact that the IDataObject interface separates
all the common exchange operations from what is called a transfer protocol. Existing protocols include
facilities  such  as  a  “clipboard”  or  a  “drag  &  drop”  feature  as  well  as  compound  documents  as
implemented in OLE. With Uniform Data Transfer, all protocols are concerned only with exchanging a
pointer to an  IDataObject interface.  The source of the data—the server—need only implement  one data
object  which  is usable  in any exchange  protocol  and that’s  it.  The  consumer—the  client—need  only
implement one piece of code to request data from a data object  once it  receives an  IDataObject pointer
from any protocol.  Once the pointer  exchange has occurred,  both sides deal  with data  exchange in a
uniform fashion, through IDataObject.
This  uniformity  not  only  reduces  the  code  necessary  to  source  or  consume  data,  but  also  greatly
simplifies the code needed to work with the protocol itself. Before COM was first implemented in OLE
2, each transfer protocol available on Microsoft Windows had its own set of functions that tightly bound
the protocol to the act of requesting data, and so programmers had to implement specific code to handle
each different protocol and exchange procedure. Now that the exchange functionality is separated from
the protocol,  dealing with each protocol requires only a minimum amount of code which is absolutely
necessary for the semantics of that protocol.
While of course extremely useful in the context of OLE Documents, Uniform Data Transfer is a generic
service with applications far beyond OLE Documents.

1.8.2Data Formats and Transfer Mediums
Before  Uniform  Data  Transfer,  virtually  all  standard  protocols  for  data  transfer  were  quite  weak  at
describing the data being transferred and usually required the exchange to occur through global memory.
This was especially true on Microsoft Windows: the format was described by a single 16-bit “clipboard
format” and the medium was always global memory.
The problem with the “clipboard format” is that  it can only describe the structure of the data,  that  is,
identify  the  layout  of  the  bits.  For  example,  the  format  CF_TEXT describes  ASCII  text.  CF_BITMAP
describes a device-dependent bitmap of so many colors and such and such dimensions, but was incapable
of describing the actual device it depends upon. Furthermore, none of these formats gave any indication
of what was actually in the data such as the amount of detail—whether a bitmap or metafile contained the
full image or just a thumbnail sketch.
The problem with always using global memory as a transfer medium is apparent when large amounts of
data are exchanged. Unless you have a machine with an obnoxious amount of memory, an exchange of,
say, a 20MB scanned true-color bitmap through global memory is going to cause considerable swapping
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to virtual memory on the disk. Restricting exchanges to global memory means that no application can
choose to exchange data  on disk when it will usually  reside on disk even when being manipulated and
will usually use virtual memory on disk anyway. It would be much more efficient to allow the source of
that data to indicate that the exchange happens on disk in the first place instead of forcing 20MB of data
through a virtual-memory bottleneck to just have it end up on disk once again.
Further,  latency of the data transfer is sometimes an issue, particularly in network situations. One often
needs or wants to start processing the beginning of a large set of data before the end the data set has even
reached the destination machine. To accomplish this, some abstraction on the medium by which the data
is transferred is needed.
To  solve  these  problems,  COM  defines  two  new  data  structures:  FORMATETC  and  STGMEDIUM.
FORMATETC is a better clipboard format, for the structure not only contains a clipboard format but also
contains  a  device  description,  a  detail  description  (full  content,  thumbnail  sketch,  iconic,  and  ‘as
printed’), and a flag indicating what storage device is used for a particular rendering. Two FORMATETC
structures  that  differ  only by storage medium are,  for all  intents and purposes,  two different  formats.
STGMEDIUM is then the better global memory handle which contains a flag indicating the medium as well
as a pointer or handle or whatever is necessary to access that actual medium and get at the data. Two
STGMEDIUM structures may indicate different mediums and have different references to data,  but those
mediums can easily contain the exact same data.
So FORMATETC is what a consumer (client) uses to indicate the type of data it wants from a data source
(object)  and is used by the source  to describe  what  formats  it  can  provide.  FORMATETC  can describe
virtually  any  data,  including  other  objects  such  a  monikers.  A  client  can  ask  a  data  object  for  an
enumeration  of  its  formats  by  requesting  the  data  object’s  IEnumFORMATETC interface.  Instead  of  an
object blandly stating that it has “text and a bitmap” it can say it has “A device-independent string of text
that is stored in global memory” and “a thumbnail sketch bitmap rendered for a 100dpi dot-matrix printer
which is stored in an IStorage object.” This ability to tightly describe data will, in time, result in higher
quality printer and screen output as well as more efficiency in data browsing where a thumbnail sketch is
much faster to retrieve and display than a full detail rendering.
STGMEDIUM means that data sources and consumers can now choose to use the most efficient exchange
medium on a per-rendering basis. If the data is so big that it should be kept on disk, the data source can
indicate a disk-based medium in it’s preferred format, only using global memory as a backup if that’s all
the consumer understands. This has the benefit of using the  best medium for exchanges as the default,
thereby improving overall performance of data exchange between applications—if some data is already
on disk, it does not even have to be loaded in order to send it to a consumer who doesn’t even have to
load  it  upon  receipt.  At  worst,  COM’s  data  exchange  mechanisms  would  be  as  good  as  anything
available  today where  all  transfers  restricted  to  global  memory.  At  best,  data  exchanges  can  be
effectively instantaneous even for large data.
Note that two potential storage mediums that can be used in data exchange are storage objects and stream
objects.  Therefore  Uniform  Data  Transfer  as  a  technology  itself  builds  upon  the  Persistent  Storage
technology as well as the basic COM foundation. Again, this enables each piece of code in an application
to be leveraged elsewhere.

1.8.3Data Selection
A data  object  can  vary  to  a  number  of  degrees  as  to  what  exact  data  it  can  exchange  through  the
IDataObject interface. Some data objects, such as those representing the clipboard or those used in a drag
& drop operation, statically represent a specific selection of data in the source, such as a range of cells in
a spreadsheet, a certain portion of a bitmap, or a certain amount of text. For the life of such static data
objects, the data underneath them does not change.
Other types of data objects, however, may support the ability to dynamically change their data set. This
ability, however, is not represented through the IDataObject interface itself. In other words, the data object
has to implement some other interface to support dynamic data selection. An example of such objects are
those that support OLE for Real-Time Market Data (WOSA/XRT) specification. 15 OLE for Real-Time
Market Data uses a data object  and the  IDataObject  interface for exchange of data,  but use the  IDispatch
15   OLE for Real-Time Market Data was formerly called the “WOSA Extensions for Real Time Market Data”.   More information on

this and other industry specific extensions to OLE is available from Microsoft.
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interface from OLE Automation to allow consumers of the data to dynamically instruct the data object to
change its working set. In other words, the OLE Automation technology (built on COM but not part of
COM itself)  allows the consumer  to identify  the specific  market  issues and the  information on those
issues (high, low, volume, etc.) that it wants to obtain from the data object. In response, the data object
internally determines where to retrieve that data and how to watch for changes in it. The data object then
notifies the consumer of changes in the data through COM’s Notification mechanism.

1.8.4Notification
Consumers of data  from an external  source  might  be interested  in knowing when data  in  that  source
changes.  This requires  some mechanism through which a data  object  itself  asynchronously notifies  a
client connected to it of just such an event at which point a client can remember to ask for an updated
copy of the data when it later needs such an update.
COM handles notifications of this kind through an object  called an  advise sink  which implements an
interface  called  IAdviseSink.16 This  sink is a  body that  absorbs asynchronous  notifications  from a  data
source. The advise sink object itself, and the IAdviseSink interface is implemented by the consumer of data
which then hands an  IAdviseSink  pointer to the data object  in question. When the data object  detects a
change, it then calls a function in IAdviseSink to notify the consumer as illustrated in Figure 2-14.

Advise
Sink

Consumer Data
Object

Data Source

Call to establish
notification passes

IAdviseSink

IDataObject

IAdviseSink

Data source
notifies IAdviseSink

on data changes

Figure 2-14: A consumer of data implements an object with the IAdviseSink interface
through which data objects notify that consumer of data changes.

This is the most frequent  situation where a client  of one object,  in this case the consumer,  will itself
implement  an object  to which the data  object  acts as a client  itself.  Notice  that  there  are no circular
reference counts here: the consumer object and the advise sink have different COM object identities, and
thus separate reference counts. When the data object  needs to notify the consumer,  it  simply calls the
appropriate member function of IAdviseSink.
So IAdviseSink  is more of a central collection of notifications of interest to a number of other interfaces
and scenarios outside of IDataObject and data exchange. It contains, for example, a function for the event
of a ‘view’ change, that is, when a particular view of data changes without a change in the underlying
data.  In  addition,  it  contains  functions for  knowing when an  object  has  saved  itself,  closed,  or  been
renamed. All of these other notifications are of particular use in compound document scenarios and are
used in  OLE,  but not  COM proper.  Chapter  14 will  describe  these functions but  the mechanisms by
which they are called are not part of COM and are not covered in this specification. Interested readers
should refer to the OLE 2 Specifications from Microsoft.
Finally,  data  objects  can  establish  notifications  with  multiple  advise  sinks.  COM  provides  some
assistance for data objects to manage an arbitrary number of IAdviseSink pointers through which the data
object can pass each pointer to COM and then tell COM when to send notifications. COM in turn notifies
all the advise sinks it maintains on behalf of the data object.

16  Astute readers will wonder why Uniform Data Transfer is defined using the Connectable Objects interfaced described
previously.  The reason is simple: UDT was designed as part of the original OLE 2.0 specification in 1991, and Connectable
Objects were not introduced until the release of the OLE Controls specification in 1993.
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